UV light can aid hospitals' fight to wipe out drug-resistant superbugs
UNC Health Care System Jan 30, 2017
A new tool – a type of ultraviolet light called UVC – could aid hospitals in the ongoing battle to keep drug–resistant bacteria from lingering in patient rooms and causing new infections.
A large randomized trial led by Duke Health and published in The Lancet journal finds use of UVC machines can cut transmission of four major superbugs by a cumulative 30 percent. The finding is specific to patients who stay overnight in a room where someone with a known positive culture or infection of a drug–resistant organism had previously been treated.
ÂSome of these germs can live on the environment so long that even after a patient with the organism has left the room and it has been cleaned, the next patient in the room could potentially be exposed, said Deverick J. Anderson, MD, an infectious disease specialist at Duke Health and lead investigator of the trial, which included more than 21,000 patients.
Co–authors of the study included David Weber, MD, MPH, medical director of UNC Hospitals Departments of Hospital Epidemiology and Occupational Health Service and associate chief medical officer of UNC Health Care; and William Rutala, MS, MPH, PhD, director of Hospital Epidemiology and the Occupational Health and Safety Program at UNC Hospitals.
The researchers focused on four drug–resistant organisms: MRSA, vancomycin–resistant enterococci (VRE), C. difficile and Acinetobacter.
The trial was conducted from 2012 to 2014 at nine hospitals in the Southeast, including three Duke University Health System hospitals, UNC Hospitals, a Veterans Affairs hospital, and small community health care settings.
The facilities used a portable machine called the Tru–D SmartUVC to disinfect rooms where patients with the target bacteria had been staying. For about 30 minutes, the machine emits UVC light into an empty room, the light bouncing and reflecting into hard–to–reach areas such as open drawers or between cabinets and fixtures. The light waves kill bacteria by disrupting their DNA.
The trial compared standard disinfection with quaternary ammonium to three other cleaning methods: using quaternary ammonium followed by UV light; using chlorine bleach instead of quaternary ammonium and no UV light; and cleaning with bleach and UV light.
Overall, the most effective strategy was using quaternary ammonium followed by UV light. This combination was particularly effective against transmission of MRSA.
The researchers found that using chlorine bleach instead of quaternary ammonium cut transmissions of VRE by more than half. Adding UV light to the bleach regimen was even more successful, cutting VRE transmission by 64 percent.
None of the cleaning methods significantly reduced the incidence of C. difficile, an infection that takes hold in the gut. The incidence of Acinetobacter was limited to one case, so researchers did not include it in their analyses.
UVC machines are now being manufactured by several companies and are priced upwards of $90,000. Hospitals could save money by reducing costly infections, but that may not be enough to offset the economic impacts of leaving patient rooms vacant for an additional 30 minutes for cleaning, Anderson said.
Hospitals have to be strategic to enable extra disinfection time while considering varied discharge times, the demand for patient rooms and availability of the machines, Anderson said. Even with these factors – which change daily – hospitals in the trial achieved 90 percent compliance, meaning they disinfected 90 percent of the targeted rooms following the exact trial protocol.
Strategies such as stringent hand–washing, precautions for staff contact with infected patients and prudent use of antibiotics in patients also play a role.
Go to Original
A large randomized trial led by Duke Health and published in The Lancet journal finds use of UVC machines can cut transmission of four major superbugs by a cumulative 30 percent. The finding is specific to patients who stay overnight in a room where someone with a known positive culture or infection of a drug–resistant organism had previously been treated.
ÂSome of these germs can live on the environment so long that even after a patient with the organism has left the room and it has been cleaned, the next patient in the room could potentially be exposed, said Deverick J. Anderson, MD, an infectious disease specialist at Duke Health and lead investigator of the trial, which included more than 21,000 patients.
Co–authors of the study included David Weber, MD, MPH, medical director of UNC Hospitals Departments of Hospital Epidemiology and Occupational Health Service and associate chief medical officer of UNC Health Care; and William Rutala, MS, MPH, PhD, director of Hospital Epidemiology and the Occupational Health and Safety Program at UNC Hospitals.
The researchers focused on four drug–resistant organisms: MRSA, vancomycin–resistant enterococci (VRE), C. difficile and Acinetobacter.
The trial was conducted from 2012 to 2014 at nine hospitals in the Southeast, including three Duke University Health System hospitals, UNC Hospitals, a Veterans Affairs hospital, and small community health care settings.
The facilities used a portable machine called the Tru–D SmartUVC to disinfect rooms where patients with the target bacteria had been staying. For about 30 minutes, the machine emits UVC light into an empty room, the light bouncing and reflecting into hard–to–reach areas such as open drawers or between cabinets and fixtures. The light waves kill bacteria by disrupting their DNA.
The trial compared standard disinfection with quaternary ammonium to three other cleaning methods: using quaternary ammonium followed by UV light; using chlorine bleach instead of quaternary ammonium and no UV light; and cleaning with bleach and UV light.
Overall, the most effective strategy was using quaternary ammonium followed by UV light. This combination was particularly effective against transmission of MRSA.
The researchers found that using chlorine bleach instead of quaternary ammonium cut transmissions of VRE by more than half. Adding UV light to the bleach regimen was even more successful, cutting VRE transmission by 64 percent.
None of the cleaning methods significantly reduced the incidence of C. difficile, an infection that takes hold in the gut. The incidence of Acinetobacter was limited to one case, so researchers did not include it in their analyses.
UVC machines are now being manufactured by several companies and are priced upwards of $90,000. Hospitals could save money by reducing costly infections, but that may not be enough to offset the economic impacts of leaving patient rooms vacant for an additional 30 minutes for cleaning, Anderson said.
Hospitals have to be strategic to enable extra disinfection time while considering varied discharge times, the demand for patient rooms and availability of the machines, Anderson said. Even with these factors – which change daily – hospitals in the trial achieved 90 percent compliance, meaning they disinfected 90 percent of the targeted rooms following the exact trial protocol.
Strategies such as stringent hand–washing, precautions for staff contact with infected patients and prudent use of antibiotics in patients also play a role.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries