Smaller, smarter, softer robotic arm for endoscopic surgery
Wyss Institute for Biologically Inspired Engineering News Aug 05, 2017
Bioinspired approach combines pop–up fabrication with soft robotics.
Researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a hybrid rigid–soft robotic arm for endoscopes with integrated sensing, flexibility, and multiple degrees of freedom. This arm – built using a manufacturing paradigm based on pop–up fabrication and soft lithography – lies flat on an endoscope until it arrives at the desired spot, then pops up to assist in surgical procedures.
The research was described in the journal Advanced Materials Technologies.
Soft robots are so promising for surgical applications because they can match the stiffness of the body, meaning they wonÂt accidentally puncture or tear tissue. However, at small scales, soft materials cannot generate enough force to perform surgical tasks.
ÂAt the millimeter scale, a soft device becomes so soft that it canÂt damage tissue but it also canÂt manipulate the tissue in any meaningful way, said Tommaso Ranzani, PhD, a Postdoctoral Fellow at the Wyss Institute and SEAS and coauthor of the paper. ÂThat limits the application of soft microsystems for performing therapy. The question is, how can we develop soft robots that are still able to generate the necessary forces without compromising safety.Â
Previous pop–up manufacturing techniques – such as those used with the RoboBees – rely on actuation methods that require high voltages or temperatures to operate, something that wouldnÂt be safe in a surgical tool directly manipulating biological tissues and organs.
So, the team integrated soft actuators into the pop–up system.
ÂWe found that by integrating soft fluidic microactuators into the rigid pop–up structures, we could create soft pop–up mechanisms that increased the performance of the actuators in terms of the force output and the predictability and controllability of the motion, said Sheila Russo, PhD, Postdoctoral Fellow at the Wyss Institute and SEAS and lead author of the paper. ÂThe idea behind this technology is basically to obtain the best of both worlds by combining soft robotic technologies with origami–inspired rigid structures. Using this fabrication method, we were able to design a device that can lie flat when the endoscope is navigating to the surgical area, and when the surgeon reaches the area they want to operate on, they can deploy a soft system that can safely and effectively interact with tissue.Â
The soft actuators are powered by water. They are connected to the rigid components with an irreversible chemical bond, without the need of any adhesive. The team demonstrated the integration of simple capacitive sensing that can be used to measure forces applied to the tissue and to give the surgeon a sense of where the arm is and how itÂs moving. The fabrication method allows for bulk manufacturing, which is important for medical devices, and allows for increased levels of complexity for more sensing or actuation. Furthermore, all materials used are biocompatible.
The arm is also equipped with a suction cup  inspired by octopus tentacles  to safely interact with tissue. The team tested the device ex vivo, simulating a complicated endoscopic procedure on pig tissue. The arm successfully manipulated the tissue safely.
The researchers demonstrated that the device could be scaled down to 1 millimeter, which would allow it to be used in even tighter endoscopic procedures, such as in lungs or the brain.
The paper was coauthored by Conor Walsh, PhD, a Core Faculty Member of the Wyss Institute and the John L. Loeb Associate Professor of Engineering and Applied Sciences at SEAS.
Go to Original
Researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a hybrid rigid–soft robotic arm for endoscopes with integrated sensing, flexibility, and multiple degrees of freedom. This arm – built using a manufacturing paradigm based on pop–up fabrication and soft lithography – lies flat on an endoscope until it arrives at the desired spot, then pops up to assist in surgical procedures.
The research was described in the journal Advanced Materials Technologies.
Soft robots are so promising for surgical applications because they can match the stiffness of the body, meaning they wonÂt accidentally puncture or tear tissue. However, at small scales, soft materials cannot generate enough force to perform surgical tasks.
ÂAt the millimeter scale, a soft device becomes so soft that it canÂt damage tissue but it also canÂt manipulate the tissue in any meaningful way, said Tommaso Ranzani, PhD, a Postdoctoral Fellow at the Wyss Institute and SEAS and coauthor of the paper. ÂThat limits the application of soft microsystems for performing therapy. The question is, how can we develop soft robots that are still able to generate the necessary forces without compromising safety.Â
Previous pop–up manufacturing techniques – such as those used with the RoboBees – rely on actuation methods that require high voltages or temperatures to operate, something that wouldnÂt be safe in a surgical tool directly manipulating biological tissues and organs.
So, the team integrated soft actuators into the pop–up system.
ÂWe found that by integrating soft fluidic microactuators into the rigid pop–up structures, we could create soft pop–up mechanisms that increased the performance of the actuators in terms of the force output and the predictability and controllability of the motion, said Sheila Russo, PhD, Postdoctoral Fellow at the Wyss Institute and SEAS and lead author of the paper. ÂThe idea behind this technology is basically to obtain the best of both worlds by combining soft robotic technologies with origami–inspired rigid structures. Using this fabrication method, we were able to design a device that can lie flat when the endoscope is navigating to the surgical area, and when the surgeon reaches the area they want to operate on, they can deploy a soft system that can safely and effectively interact with tissue.Â
The soft actuators are powered by water. They are connected to the rigid components with an irreversible chemical bond, without the need of any adhesive. The team demonstrated the integration of simple capacitive sensing that can be used to measure forces applied to the tissue and to give the surgeon a sense of where the arm is and how itÂs moving. The fabrication method allows for bulk manufacturing, which is important for medical devices, and allows for increased levels of complexity for more sensing or actuation. Furthermore, all materials used are biocompatible.
The arm is also equipped with a suction cup  inspired by octopus tentacles  to safely interact with tissue. The team tested the device ex vivo, simulating a complicated endoscopic procedure on pig tissue. The arm successfully manipulated the tissue safely.
The researchers demonstrated that the device could be scaled down to 1 millimeter, which would allow it to be used in even tighter endoscopic procedures, such as in lungs or the brain.
The paper was coauthored by Conor Walsh, PhD, a Core Faculty Member of the Wyss Institute and the John L. Loeb Associate Professor of Engineering and Applied Sciences at SEAS.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries