Researchers create model of anorexia nervosa using stem cells
UC San Diego Health System News Mar 17, 2017
Newest Âdisease–in–a–dish technique suggests novel gene may contribute to eating disorder.
?An international research team, led by scientists at University of California San Diego School of Medicine, has created the first cellular model of anorexia nervosa (AN), reprogramming induced pluripotent stem cells (iPSCs) derived from adolescent females with the eating disorder.
Writing in the March 14th issue of the journal Translational Psychiatry, the scientists said the resulting AN neurons – the disease in a dish – revealed a novel gene that appears to contribute to AN pathophysiology, buttressing the idea that AN has a strong genetic factor. The proof–of–concept approach, they said, provides a new tool to investigate the elusive and largely unknown molecular and cellular mechanisms underlying the disease.
Though often viewed as a non–biological disorder, new research suggests 50 to 75 percent of risk for AN may be heritable; with predisposition driven primarily by genetics and not, as sometimes presumed, by vanity, poor parenting or factors related to specific groups of individuals.
But little is actually known about the molecular, cellular or genetic elements or genesis of AN. In their study, Alysson Muotri, PhD, professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine, director of the UC San Diego Stem Cell Program and a member of the Sanford Consortium for Regenerative Medicine, and colleagues at UC San Diego and in Brazil, Australia and Thailand, took skin cells from four females with AN and four healthy controls, generated iPSCs (stem cells with the ability to become many types of cells) from these cells and induce these iPSCs to become neurons.
Previously, Muotri and colleagues had created stem cell–derived neuronal models of autism and Williams syndrome, a rare genetic neurological condition. Then they performed unbiased comprehensive whole transcriptome and pathway analyses to determine not just which genes were being expressed or activated in AN neurons, but which genes or transcripts (bits of RNA used in cellular messaging) might be associated with causing or advancing the disease process. No predicted differences in neurotransmitter levels were observed, the researchers said, but they did note disruption in the Tachykinin receptor 1 (TACR1) gene. Tachykinins are neuropeptides or proteins expressed throughout the nervous and immune systems, where they participate in many cellular and physiological processes and have been linked to multiple diseases, including chronic inflammation, cancer, infection and affective and addictive disorders.
The scientists posit that disruption of the tachykinin system may contribute to AN before other phenotypes or observed characteristics become obvious, but said further studies employing larger patient cohorts are necessary.
Go to Original
?An international research team, led by scientists at University of California San Diego School of Medicine, has created the first cellular model of anorexia nervosa (AN), reprogramming induced pluripotent stem cells (iPSCs) derived from adolescent females with the eating disorder.
Writing in the March 14th issue of the journal Translational Psychiatry, the scientists said the resulting AN neurons – the disease in a dish – revealed a novel gene that appears to contribute to AN pathophysiology, buttressing the idea that AN has a strong genetic factor. The proof–of–concept approach, they said, provides a new tool to investigate the elusive and largely unknown molecular and cellular mechanisms underlying the disease.
Though often viewed as a non–biological disorder, new research suggests 50 to 75 percent of risk for AN may be heritable; with predisposition driven primarily by genetics and not, as sometimes presumed, by vanity, poor parenting or factors related to specific groups of individuals.
But little is actually known about the molecular, cellular or genetic elements or genesis of AN. In their study, Alysson Muotri, PhD, professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine, director of the UC San Diego Stem Cell Program and a member of the Sanford Consortium for Regenerative Medicine, and colleagues at UC San Diego and in Brazil, Australia and Thailand, took skin cells from four females with AN and four healthy controls, generated iPSCs (stem cells with the ability to become many types of cells) from these cells and induce these iPSCs to become neurons.
Previously, Muotri and colleagues had created stem cell–derived neuronal models of autism and Williams syndrome, a rare genetic neurological condition. Then they performed unbiased comprehensive whole transcriptome and pathway analyses to determine not just which genes were being expressed or activated in AN neurons, but which genes or transcripts (bits of RNA used in cellular messaging) might be associated with causing or advancing the disease process. No predicted differences in neurotransmitter levels were observed, the researchers said, but they did note disruption in the Tachykinin receptor 1 (TACR1) gene. Tachykinins are neuropeptides or proteins expressed throughout the nervous and immune systems, where they participate in many cellular and physiological processes and have been linked to multiple diseases, including chronic inflammation, cancer, infection and affective and addictive disorders.
The scientists posit that disruption of the tachykinin system may contribute to AN before other phenotypes or observed characteristics become obvious, but said further studies employing larger patient cohorts are necessary.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries