Penn State develops first-of-a-kind model to research post-malaria epilepsy
Pennsylvania State University Health and Medicine News Apr 20, 2017
A first–of–its–kind mouse model could lead to an understanding of how cerebral malaria infection leads to the development of epilepsy in children, and to the prevention of seizures. The model – a way for researchers to simulate the effects of malaria in children by using mice – was developed in a collaboration between researchers at Penn State's colleges of medicine, engineering, science and agriculture.
Children with cerebral malaria often enter a coma and die from complications, and up to 17 percent of survivors develop epilepsy. As Schiff looked into how to approach the problem, he realized that not much science is available on post–malaria epilepsy, one of the leading causes of epilepsy on the planet.
"A group of us at Penn State decided to put together our expertise and develop an animal model to test what would be the best therapies for children, so they don't get epilepsy after malaria," he said.
To effectively study post–malarial epilepsy, the animal model must be as close to the human version of the disease as possible. The model must contract malaria, be cured and then have the potential to develop epilepsy in the same way that a child does. To mirror the natural environment, the model needs to be generalizable to a variety of situations and not be restricted to a particular type of parasite or infected host.
Having a model will allow researchers to perform pre–clinical testing to design therapies to prevent epilepsy if given during treatment of malaria infection. The model can also be used to study how malaria and similar infectious diseases cause epilepsy – a mystery at present.
The researchers developed four different variations, giving scientists a suite of tools to study malaria.
They reported their results in the journal Scientific Reports.
"It's a suite of models, not just one strain of malaria," Schiff said. "This helps protect against a model having a version of the disease that is irrelevant to humans. It's our best shot at developing treatments because there are four different parasite–mouse models to use."
The model can also be used to study sudden unexplained death from epilepsy (SUDEP). In certain cases, epileptic seizures can lead to a person not breathing and their heart stopping. Until now, researchers did not have a way to study SUDEP. The model they developed also shows instances of SUDEP, giving scientists an important tool to learn what causes the sudden death. By understanding how epilepsy causes SUDEP, researchers can better develop preventative treatments.
Go to Original
Children with cerebral malaria often enter a coma and die from complications, and up to 17 percent of survivors develop epilepsy. As Schiff looked into how to approach the problem, he realized that not much science is available on post–malaria epilepsy, one of the leading causes of epilepsy on the planet.
"A group of us at Penn State decided to put together our expertise and develop an animal model to test what would be the best therapies for children, so they don't get epilepsy after malaria," he said.
To effectively study post–malarial epilepsy, the animal model must be as close to the human version of the disease as possible. The model must contract malaria, be cured and then have the potential to develop epilepsy in the same way that a child does. To mirror the natural environment, the model needs to be generalizable to a variety of situations and not be restricted to a particular type of parasite or infected host.
Having a model will allow researchers to perform pre–clinical testing to design therapies to prevent epilepsy if given during treatment of malaria infection. The model can also be used to study how malaria and similar infectious diseases cause epilepsy – a mystery at present.
The researchers developed four different variations, giving scientists a suite of tools to study malaria.
They reported their results in the journal Scientific Reports.
"It's a suite of models, not just one strain of malaria," Schiff said. "This helps protect against a model having a version of the disease that is irrelevant to humans. It's our best shot at developing treatments because there are four different parasite–mouse models to use."
The model can also be used to study sudden unexplained death from epilepsy (SUDEP). In certain cases, epileptic seizures can lead to a person not breathing and their heart stopping. Until now, researchers did not have a way to study SUDEP. The model they developed also shows instances of SUDEP, giving scientists an important tool to learn what causes the sudden death. By understanding how epilepsy causes SUDEP, researchers can better develop preventative treatments.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries