One vaccine injection could carry many doses
Massachusetts Institute of Technology Research News Sep 21, 2017
Microparticles created by new 3-D fabrication method could release drugs or vaccines long after injection.
MIT engineers have invented a new 3-D fabrication method that can generate a novel type of drug-carrying particle that could allow multiple doses of a drug or vaccine to be delivered over an extended time period with just one injection.
The new microparticles resemble tiny coffee cups that can be filled with a drug or vaccine and then sealed with a lid. The particles are made of a biocompatible, FDA-approved polymer that can be designed to degrade at specific times, spilling out the contents of the Âcup.Â
ÂWe are very excited about this work because, for the first time, we can create a library of tiny, encased vaccine particles, each programmed to release at a precise, predictable time, so that people could potentially receive a single injection that, in effect, would have multiple boosters already built into it. This could have a significant impact on patients everywhere, especially in the developing world where patient compliance is particularly poor, said Robert Langer, the David H. Koch Institute Professor at MIT.
Langer and Ana Jaklenec, a research scientist at MITÂs Koch Institute for Integrative Cancer Research, are the senior authors of the paper, which appears online in the journal Science on Sept. 14. The paperÂs lead authors are postdoc Kevin McHugh and former postdoc Thanh D. Nguyen, now an assistant professor of mechanical engineering at the University of Connecticut.
LangerÂs lab began working on the new drug delivery particles as part of a project funded by the Bill and Melinda Gates Foundation, which was seeking a way to deliver multiple doses of a vaccine over a specified period of time with just one injection. That could allow babies in developing nations, who might not see a doctor very often, to get one injection after birth that would deliver all of the vaccines they would need during the first one or two years of life.
Langer has previously developed polymer particles with drugs embedded throughout the particle, allowing them to be gradually released over time. However, for this project, the researchers wanted to come up with a way to deliver short bursts of a drug at specific time intervals, to mimic the way a series of vaccines would be given.
To achieve their goal, they set out to develop a sealable polymer cup made from PLGA, a biocompatible polymer that has already been approved for use in medical devices such as implants, sutures, and prosthetic devices. PLGA can also be designed to degrade at different rates, allowing for the fabrication of multiple particles that release their contents at different times.
Conventional 3-D printing techniques proved unsuitable for the material and size that the researchers wanted, so they had to invent a new way to fabricate the cups, drawing inspiration from computer chip manufacturing.
Using photolithography, they created silicon molds for the cups and the lids. Large arrays of about 2,000 molds are fit onto a glass slide, and these molds are used to shape the PLGA cups (cubes with edge lengths of a few hundred microns) and lids. Once the array of polymer cups has been formed, the researchers employed a custom-built, automated dispensing system to fill each cup with a drug or vaccine. After the cups are filled, the lids are aligned and lowered onto each cup, and the system is heated slightly until the cup and lid fuse together, sealing the drug inside.
ÂEach layer is first fabricated on its own, and then theyÂre assembled together, Jaklenec said. ÂPart of the novelty is really in how we align and seal the layers. In doing so we developed a new method that can make structures which current 3-D printing methods cannot. This new method called SEAL (StampEd Assembly of polymer Layers) can be used with any thermoplastic material and allows for fabrication of microstructure
Go to Original
MIT engineers have invented a new 3-D fabrication method that can generate a novel type of drug-carrying particle that could allow multiple doses of a drug or vaccine to be delivered over an extended time period with just one injection.
The new microparticles resemble tiny coffee cups that can be filled with a drug or vaccine and then sealed with a lid. The particles are made of a biocompatible, FDA-approved polymer that can be designed to degrade at specific times, spilling out the contents of the Âcup.Â
ÂWe are very excited about this work because, for the first time, we can create a library of tiny, encased vaccine particles, each programmed to release at a precise, predictable time, so that people could potentially receive a single injection that, in effect, would have multiple boosters already built into it. This could have a significant impact on patients everywhere, especially in the developing world where patient compliance is particularly poor, said Robert Langer, the David H. Koch Institute Professor at MIT.
Langer and Ana Jaklenec, a research scientist at MITÂs Koch Institute for Integrative Cancer Research, are the senior authors of the paper, which appears online in the journal Science on Sept. 14. The paperÂs lead authors are postdoc Kevin McHugh and former postdoc Thanh D. Nguyen, now an assistant professor of mechanical engineering at the University of Connecticut.
LangerÂs lab began working on the new drug delivery particles as part of a project funded by the Bill and Melinda Gates Foundation, which was seeking a way to deliver multiple doses of a vaccine over a specified period of time with just one injection. That could allow babies in developing nations, who might not see a doctor very often, to get one injection after birth that would deliver all of the vaccines they would need during the first one or two years of life.
Langer has previously developed polymer particles with drugs embedded throughout the particle, allowing them to be gradually released over time. However, for this project, the researchers wanted to come up with a way to deliver short bursts of a drug at specific time intervals, to mimic the way a series of vaccines would be given.
To achieve their goal, they set out to develop a sealable polymer cup made from PLGA, a biocompatible polymer that has already been approved for use in medical devices such as implants, sutures, and prosthetic devices. PLGA can also be designed to degrade at different rates, allowing for the fabrication of multiple particles that release their contents at different times.
Conventional 3-D printing techniques proved unsuitable for the material and size that the researchers wanted, so they had to invent a new way to fabricate the cups, drawing inspiration from computer chip manufacturing.
Using photolithography, they created silicon molds for the cups and the lids. Large arrays of about 2,000 molds are fit onto a glass slide, and these molds are used to shape the PLGA cups (cubes with edge lengths of a few hundred microns) and lids. Once the array of polymer cups has been formed, the researchers employed a custom-built, automated dispensing system to fill each cup with a drug or vaccine. After the cups are filled, the lids are aligned and lowered onto each cup, and the system is heated slightly until the cup and lid fuse together, sealing the drug inside.
ÂEach layer is first fabricated on its own, and then theyÂre assembled together, Jaklenec said. ÂPart of the novelty is really in how we align and seal the layers. In doing so we developed a new method that can make structures which current 3-D printing methods cannot. This new method called SEAL (StampEd Assembly of polymer Layers) can be used with any thermoplastic material and allows for fabrication of microstructure
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries