• Profile
Close

New method proposes to diagnose dopamine-linked disorders

Florida Atlantic University Research News May 19, 2018

If the “eyes are the window to the soul,” then a series of studies from a Florida Atlantic University laboratory suggests that they may also be a window into diagnosing and treating attention-deficit/hyperactivity disorder (ADHD) and other dopamine-linked neuropsychiatric disorders.

ADHD is the most prevalent inherited neurobehavioral childhood disorder that affects between 4% to 12% of school-aged children in the United States. Changes in the neurochemical dopamine are believed to contribute to this disorder as well as bipolar disorder and autism spectrum disorder (ASD). Individuals diagnosed with these disorders have been found to express a rare, functional alteration in the dopamine transporter. ADHD is more prevalent in relatives of bipolar disorder subjects and many individuals diagnosed with ASD meet clinical criteria for ADHD, suggesting that the three disorders, deep down, share common origins.

Several years ago, researchers from the FAU Brain Institute, led by Randy D. Blakely, PhD, executive director of the FAU Brain Institute and a professor of biomedical science in FAU’s Charles E. Schmidt College of Medicine, identified a rare, functional mutation in the dopamine transporter, DAT Val559, in two boys with ADHD. The mutation, which has previously been identified in subjects with bipolar disorder, was then identified in subjects with ASD. Blakely’s team hypothesized that elucidating the impact of the variant could provide new insights into how brain dopamine dysfunction drives mental illness, including those linked to ADHD, autism, and bipolar disorder.

With mice whose DNA has been modified to express the DAT Val559 mutation, Blakely’s team is evaluating the molecular, cellular, and circuit level disturbances that can increase risk for behavioral disorders, including changes in cognitive capacities, attention, and impulsivity.

In a study recently published in the journal Behavioural Brain Research, Blakely’s graduate student, Gwynne Davis, was able to demonstrate changes in these mice that indicate impulsivity and an elevated motivation for reward. Impulsivity can be tested in a number of ways in mice, such as tasks that require the mouse to respond before a set time has elapsed. The DAT Val559 mice show a difficulty in waiting to receive rewards. Further studies indicate that this “waiting impulsivity” derives from an increased motivation to receive reward.

“While impulsivity is one of the core components of an ADHD diagnosis, and can be present in subjects with ASD and bipolar disorder, the source of that impulsivity remains unclear, and the type of impulsivity these subjects demonstrate can vary greatly,” said Blakely. “Our studies support the idea that disrupted dopamine signaling contributes to these disorders and may lead to more effective treatments.”

Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay