New insights into how the human brain processes scent
Northwestern Medicine News Jun 05, 2017
Theta oscillations, a type of rhythmic electrical activity that waxes and wanes four to eight times per second, may play a fundamental role in processing scent in the human brain, according to a new study recently published in the journal Neuron.
The use of intracranial EEG recordings in patients with medically resistant epilepsy allowed Jay Gottfried, MD, PhD, professor of Neurology, and his team to characterize, for the first time, the time–frequency dynamics of odor processing in the human piriform cortex, a region in the brain important for smell.
ÂThe study we did here was to understand what happens at the microstructural level of the human brain when you smell an odor, Gottfried said. ÂThe advantage of the approach is we can record the physiological rhythms of the brain using these electrodes in this unique and rare patient population.Â
They found that odors could be decoded as early as 110 milliseconds from a personÂs first sniff.
ÂA lot of people think that the sense of smell is a very slow sense, so this study highlights the speed of the sense of smell and relates it to its biological underpinnings, Gottfried said.
Heidi Jiang, a graduate student and the first author of the study, obtained electrophysiological recordings while patients took part in a cued odor detection task.
Jiang and Gottfried found that odor stimulation enhanced theta waves in the piriform cortex, in each of seven patients. Under conditions where patients smelled odorless air, the scientists observed no change in theta waves. Across four different odors, the physiological features of the theta waves could be used to distinguish between each odor.
ÂBased on this rhythmic activity, we can decode which smell the patient has encountered, Gottfried said. ÂThese oscillations contain critical information about whether the smell is strawberry, peanut butter, chocolate or garlic, and this information is already available to the brain within a very rapid timeframe.Â
Additionally, with electrodes in the piriform cortex and hippocampus, they found the presence of odor caused both regions to fall into a synchronized rhythm, suggesting that theta oscillations facilitate the coordination and exchange of information between those two areas.
ÂWhat is neat about this finding is that the hippocampus is a central hub through which memories can be reactivated and retrieved – like what ice cream you ate, when you ate it, and where you ate it. ItÂs possible that the hippocampus is able to telegraph some of that information to the piriform cortex to facilitate olfactory processing, Gottfried said.
As noted above, the subjects in the study were patients with medically resistant epilepsy who had existing electrode implants placed for purely clinical considerations, but gave the scientists an opportunity to gather detailed electrophysiological data.
ÂA lot of our work has used fMRI techniques to relate brain activity patterns in the human brain to different odor perceptual states such as memory, but the fMRI work provides a very limited understanding of the mechanisms and timing that support the sense of smell. So it has been a special opportunity to work with these rare epilepsy patients at Northwestern, Gottfried said.
In terms of functional significance, Gottfried believes these oscillations might serve as an internal clock in the brain.
ÂThe brain doesnÂt really have access to an external time reference, and across numerous studies there is more and more evidence to suggest it is the oscillations in the brain that are time–keeping mechanisms, Gottfried said. ÂThe brain may use these oscillations to segment information into malleable packets of information.Â
Go to Original
The use of intracranial EEG recordings in patients with medically resistant epilepsy allowed Jay Gottfried, MD, PhD, professor of Neurology, and his team to characterize, for the first time, the time–frequency dynamics of odor processing in the human piriform cortex, a region in the brain important for smell.
ÂThe study we did here was to understand what happens at the microstructural level of the human brain when you smell an odor, Gottfried said. ÂThe advantage of the approach is we can record the physiological rhythms of the brain using these electrodes in this unique and rare patient population.Â
They found that odors could be decoded as early as 110 milliseconds from a personÂs first sniff.
ÂA lot of people think that the sense of smell is a very slow sense, so this study highlights the speed of the sense of smell and relates it to its biological underpinnings, Gottfried said.
Heidi Jiang, a graduate student and the first author of the study, obtained electrophysiological recordings while patients took part in a cued odor detection task.
Jiang and Gottfried found that odor stimulation enhanced theta waves in the piriform cortex, in each of seven patients. Under conditions where patients smelled odorless air, the scientists observed no change in theta waves. Across four different odors, the physiological features of the theta waves could be used to distinguish between each odor.
ÂBased on this rhythmic activity, we can decode which smell the patient has encountered, Gottfried said. ÂThese oscillations contain critical information about whether the smell is strawberry, peanut butter, chocolate or garlic, and this information is already available to the brain within a very rapid timeframe.Â
Additionally, with electrodes in the piriform cortex and hippocampus, they found the presence of odor caused both regions to fall into a synchronized rhythm, suggesting that theta oscillations facilitate the coordination and exchange of information between those two areas.
ÂWhat is neat about this finding is that the hippocampus is a central hub through which memories can be reactivated and retrieved – like what ice cream you ate, when you ate it, and where you ate it. ItÂs possible that the hippocampus is able to telegraph some of that information to the piriform cortex to facilitate olfactory processing, Gottfried said.
As noted above, the subjects in the study were patients with medically resistant epilepsy who had existing electrode implants placed for purely clinical considerations, but gave the scientists an opportunity to gather detailed electrophysiological data.
ÂA lot of our work has used fMRI techniques to relate brain activity patterns in the human brain to different odor perceptual states such as memory, but the fMRI work provides a very limited understanding of the mechanisms and timing that support the sense of smell. So it has been a special opportunity to work with these rare epilepsy patients at Northwestern, Gottfried said.
In terms of functional significance, Gottfried believes these oscillations might serve as an internal clock in the brain.
ÂThe brain doesnÂt really have access to an external time reference, and across numerous studies there is more and more evidence to suggest it is the oscillations in the brain that are time–keeping mechanisms, Gottfried said. ÂThe brain may use these oscillations to segment information into malleable packets of information.Â
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries