GW cancer center researchers look at resistance to targeted therapy in mantle cell lymphoma
George Washington School of Medicine and Health Sciences News Jul 08, 2017
A group of lymphoma researchers at the GW Cancer Center study the microenvironment in the body supporting lymphoma cells and allowing resistance.
Some patients suffering with mantle cell lymphoma can be treated with a pill called ibrutinib, forgoing conventional chemotherapy. However, many are developing a resistance to this treatment. Research by Eduardo Sotomayor, MD, director of the George Washington University Cancer Center and Jianguo Tao, MD, PhD, senior member of the Cancer Biology and Evolution Program at Moffitt Cancer Center, details how lymphoma cells are acquiring their resistance.
ÂNot all patients will react to a drug in the same way, said Sotomayor. ÂSome will take it and no longer show symptoms of lymphoma. In others, they may not show a response to the treatment at all, and in other, after an initial response to treatment, the lymphoma may come back more aggressive than before. What we wanted to understand is: How can we make this treatment work for everyone?Â
In the past, those diagnosed with mantle cell lymphoma received chemotherapy and monoclonal antibody treatments, which often led to a number of side effects. Some patients are now treated with ibrutinib, a daily pill that has been associated with significant positive response by lymphoma patients. Sotomayor and his research team wanted to understand the lymphoma cells and the mechanisms that allow them to develop resistance to the drug.
ÂAs shown in the past by Dr. TaoÂs group, mantle cell lymphoma cells depend on strong interactions with the microenvironment for progression. Rather than focus on the cells themselves, our team was concerned about understanding the microenvironment where the cells thrive and find protection, Sotomayor explained. ÂWe need to look at the tumor cells in the context of the microenvironment to understand how they build up resistance.Â
The team noticed that when ibrutinib shut down the bruton tyrosine kinase pathway that the lymphoma cells thrived in, the cells adapted and began to activate another pathway, noted in the study as PI3K–AKT–mTOR. This allowed the cancer cells to come back, in some cases as more aggressive. Not only did the cells adapt to the drug, they adapted to its effects on the space around them and adapted the microenvironment facilitating further progression. Exploring methods for inhibiting the pathways and resistance networks would be a next step in finding a way to make ibrutinib an even better drug for more patients.
The study titled, ÂUnification of de novo and Acquired Ibrutinib Resistance in Mantle Cell Lymphoma, was published in the journal Nature Communications.
Go to Original
Some patients suffering with mantle cell lymphoma can be treated with a pill called ibrutinib, forgoing conventional chemotherapy. However, many are developing a resistance to this treatment. Research by Eduardo Sotomayor, MD, director of the George Washington University Cancer Center and Jianguo Tao, MD, PhD, senior member of the Cancer Biology and Evolution Program at Moffitt Cancer Center, details how lymphoma cells are acquiring their resistance.
ÂNot all patients will react to a drug in the same way, said Sotomayor. ÂSome will take it and no longer show symptoms of lymphoma. In others, they may not show a response to the treatment at all, and in other, after an initial response to treatment, the lymphoma may come back more aggressive than before. What we wanted to understand is: How can we make this treatment work for everyone?Â
In the past, those diagnosed with mantle cell lymphoma received chemotherapy and monoclonal antibody treatments, which often led to a number of side effects. Some patients are now treated with ibrutinib, a daily pill that has been associated with significant positive response by lymphoma patients. Sotomayor and his research team wanted to understand the lymphoma cells and the mechanisms that allow them to develop resistance to the drug.
ÂAs shown in the past by Dr. TaoÂs group, mantle cell lymphoma cells depend on strong interactions with the microenvironment for progression. Rather than focus on the cells themselves, our team was concerned about understanding the microenvironment where the cells thrive and find protection, Sotomayor explained. ÂWe need to look at the tumor cells in the context of the microenvironment to understand how they build up resistance.Â
The team noticed that when ibrutinib shut down the bruton tyrosine kinase pathway that the lymphoma cells thrived in, the cells adapted and began to activate another pathway, noted in the study as PI3K–AKT–mTOR. This allowed the cancer cells to come back, in some cases as more aggressive. Not only did the cells adapt to the drug, they adapted to its effects on the space around them and adapted the microenvironment facilitating further progression. Exploring methods for inhibiting the pathways and resistance networks would be a next step in finding a way to make ibrutinib an even better drug for more patients.
The study titled, ÂUnification of de novo and Acquired Ibrutinib Resistance in Mantle Cell Lymphoma, was published in the journal Nature Communications.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries