• Profile
Close

Confronted with bacteria, infected cells die so others can live, Penn study finds

University of Pennsylvania News Oct 13, 2017

The immune system is constantly performing surveillance to detect foreign organisms that might do harm. But pathogens, for their part, have evolved a number of strategies to evade this detection, such as secreting proteins that hinder a host’s ability to mount an immune response.

In a new study, a team of researchers led by Igor E. Brodsky of the University of Pennsylvania, identified a “back-up alarm” system in host cells that responds to a pathogen’s attempt to subvert the immune system.

“In the context of an infection, the cells that are dying are talking to the other cells that aren’t infected,” said Brodsky, an assistant professor in the Department of Pathobiology in Penn’s School of Veterinary Medicine and senior author on the study. “I don’t think of it as altruistic, exactly, but it’s a way for the cells that can’t respond any longer to still alert their neighbors that a pathogen is present.”

The findings address the long-standing question of how a host can generate an immune response to something that is designed to shut off that very response. A potential future application of this new understanding may enable the cell-death pathway triggered by bacteria to be harnessed in order to target tumor cells and encourage their demise.

The work appeared in the Journal of Experimental Medicine.

A major way that the immune system recognizes pathogens is by detecting patterns that are shared among microbes but are distinct from a host’s own cells. Pathogens, however, don’t make it easy for immune cells to destroy them. Some can inject proteins into host cells that interfere with this detection, allowing an infection to become established.

Yersinia bacteria, certain species of which cause plague and gastrointestinal disease in humans, is one such pathogen. These bacteria inject a protein, YopJ, into immune cells, that interferes with key signaling pathways, thereby blocking the production of cytokines that could otherwise communicate with other cells about the infection and inducing apoptosis, a form of cell death, which had generally been thought to be non-inflammatory - in other words, a quiet death.

Yet humans and mice can survive Yersinia infections because somehow their immune systems become aware of the presence of an invader.

To understand how host cells overcome Yersinia’s insidious strategy, Brodsky’s team focused on the activity of an enzyme called RIPK1. RIPK1 was known to play a key role in signaling in respose to an immune cell detecting pathogen-associated patterns as well as inducing cell death.

“RIPK1 sits at a key decision point for the cell,” Brodsky said. “Depending on the stimuli the cells see, this protein can transduce a signal to activate gene expression, programmed cell death, or apoptosis, or it can activate another form of cell death called programmed necrosis.”

Two recent papers in the journal Nature Cell Biology describe the mechanism of how RIPK1 helps a cell switch between pro-survival and pro-death functions. And while it was known that interfering with this pathway can induce cells to die, there had never been a good physiological explanation for why that should be the case.

The resarchers relied upon a strain of mouse, created by GlaxoSmithKline, that possesses a specific mutation in RIPK1 that renders the enzyme unable to trigger the apoptosis pathway upon encountering Yersinia bacteria.

“This mouse was really useful for us to be able to distinguish between the inflammatory response and apoptosis,” Brodsky said.

When these mice were infected with Yersinia, their cells did not undergo apoptosis. Instead, these animals became extremely sensitive to infection, succumbing to an infection that normal mice almost always survive. Bacteria could be found dispersed throughout the body, whereas in normal mice Yersinia was typically confined to the lymph nodes, spleen and liver.

“Th
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay