Brain cancer study reveals therapy clues
University of Edinburgh College of Medicine News May 15, 2017
Researchers have pinpointed two key molecules that drive the growth of an aggressive type of adult brain cancer.
The findings shed light on the mechanisms that underpin brain cancer progression and could eventually reveal targets for the development of much–needed therapies, researchers say.
Scientists conducted lab tests on tumour cells from patients with glioblastoma.
Previous studies have found that glioblastoma cells share similarities with normal brain stem cells, which give rise to the many different cell types in the brain during development.
The team identified two molecules that are produced at high levels by the cells  called FOXG1 and SOX2.
Similar levels of these molecules are found in brain stem cells and are a defining feature of these cells.
The researchers found that SOX2 drives glioblastoma cells to keep dividing, a hallmark of cancer.
FOXG1 stops the cells from responding to other signals that would usually point them towards becoming specialised, the team found.
"Brain cancer cells seem to be hijacking important cell machinery that is used by normal brain stem cells. The tactic they appear to use is to produce high levels of these key regulators. This locks the tumour cells into perpetual cycles of growth and stops them listening to the signals that normally control cell specialisation," said Dr Steve Pollard, CRUK Senior Cancer Research Fellow, the University of Edinburgh.
Both FOXG1 and SOX2 work by controlling when key target genes are switched on and off by the cell.
The researchers analysed which genes were affected and identified several factors that are involved in controlling cell division.
The insights could open the door to new therapies that stop or slow tumour growth, the researchers say.
"The next step will be for scientists to see if they can develop a way to stop glioblastoma cells from using these molecules as a way to survive and then to test it in clinical trials to see whether this affects tumour growth in people," said Dr Áine McCarthy, Senior Science Information Officer, Cancer Research UK.
The study was led by scientists at the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh.
The research was published in the journal Genes and Development.
Go to Original
The findings shed light on the mechanisms that underpin brain cancer progression and could eventually reveal targets for the development of much–needed therapies, researchers say.
Scientists conducted lab tests on tumour cells from patients with glioblastoma.
Previous studies have found that glioblastoma cells share similarities with normal brain stem cells, which give rise to the many different cell types in the brain during development.
The team identified two molecules that are produced at high levels by the cells  called FOXG1 and SOX2.
Similar levels of these molecules are found in brain stem cells and are a defining feature of these cells.
The researchers found that SOX2 drives glioblastoma cells to keep dividing, a hallmark of cancer.
FOXG1 stops the cells from responding to other signals that would usually point them towards becoming specialised, the team found.
"Brain cancer cells seem to be hijacking important cell machinery that is used by normal brain stem cells. The tactic they appear to use is to produce high levels of these key regulators. This locks the tumour cells into perpetual cycles of growth and stops them listening to the signals that normally control cell specialisation," said Dr Steve Pollard, CRUK Senior Cancer Research Fellow, the University of Edinburgh.
Both FOXG1 and SOX2 work by controlling when key target genes are switched on and off by the cell.
The researchers analysed which genes were affected and identified several factors that are involved in controlling cell division.
The insights could open the door to new therapies that stop or slow tumour growth, the researchers say.
"The next step will be for scientists to see if they can develop a way to stop glioblastoma cells from using these molecules as a way to survive and then to test it in clinical trials to see whether this affects tumour growth in people," said Dr Áine McCarthy, Senior Science Information Officer, Cancer Research UK.
The study was led by scientists at the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh.
The research was published in the journal Genes and Development.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries