âMARRVELâ new way to compile big data in human-centric way
Baylor College of Medicine News Jun 08, 2017
When a group of researchers in the Undiagnosed Disease Network at Baylor College of Medicine realized they were spending days combing through databases searching for information regarding gene variants, they decided to do something about it. By creating MARRVEL (Model organism Aggregated Resources for Rare Variant ExpLoration) they are now able to help not only their own lab but also researchers everywhere search databases all at once and in a matter of minutes.
This collaborative effort among Baylor, the Jan and Dan Duncan Neurological Research Institute at Texas ChildrenÂs Hospital (NRI) and Harvard Medical School was described in the latest online edition of the American Journal of Human Genetics.
ÂOne big problem we have is that tens of thousands of human genome variants and phenotypes are spread throughout a number of databases, each one with their own organization and nomenclature that arenÂt easily accessible, said Julia Wang, an MD/PhD candidate in the Medical Scientist Training Program at Baylor and a McNair Student Scholar in the Bellen lab, as well as first author on the publication. ÂMARRVEL is a way to assess the large volume of data, providing a concise summary of the most relevant information in a rapid user–friendly format.Â
MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER, all separate databases to which researchers across the globe have contributed, sharing tens of thousands of human genome variants and phenotypes. Since there is not a set standard for recording this type of information, each one has a different approach and searching each database can yield results organized in different ways. Similarly, decades of research in various model organisms, from mouse to yeast, are also stored in their own individual databases with different sets of standards.
Dr. Zhandong Liu, assistant professor in pediatrics  neurology at Baylor, a member of the NRI and co–corresponding author on the publication, explains that MARRVEL acts similar to an internet search engine.
ÂThis program helps to collate the information in a common language, drawing parallels and putting it together on one single page. Our program curates model organism specific databases to concurrently display a concise summary of the data, Liu said.
A user can first search for a gene or variant, Wang explains. Results may include what is known about this gene overall, whether or not that gene is associated with a disease, whether it is highly occurring in the general population and how it is affected by certain mutations.
ÂMARRVEL helps to facilitate analysis of human genes and variants by cross–disciplinary integration of 18 million records so we can speed up the discovery process through computation, Liu said. ÂAll this information is basically inaccessible unless researchers can access it efficiently and apply it to their own work to find causes, treatments and hopefully identify new diseases.Â
Go to Original
This collaborative effort among Baylor, the Jan and Dan Duncan Neurological Research Institute at Texas ChildrenÂs Hospital (NRI) and Harvard Medical School was described in the latest online edition of the American Journal of Human Genetics.
ÂOne big problem we have is that tens of thousands of human genome variants and phenotypes are spread throughout a number of databases, each one with their own organization and nomenclature that arenÂt easily accessible, said Julia Wang, an MD/PhD candidate in the Medical Scientist Training Program at Baylor and a McNair Student Scholar in the Bellen lab, as well as first author on the publication. ÂMARRVEL is a way to assess the large volume of data, providing a concise summary of the most relevant information in a rapid user–friendly format.Â
MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER, all separate databases to which researchers across the globe have contributed, sharing tens of thousands of human genome variants and phenotypes. Since there is not a set standard for recording this type of information, each one has a different approach and searching each database can yield results organized in different ways. Similarly, decades of research in various model organisms, from mouse to yeast, are also stored in their own individual databases with different sets of standards.
Dr. Zhandong Liu, assistant professor in pediatrics  neurology at Baylor, a member of the NRI and co–corresponding author on the publication, explains that MARRVEL acts similar to an internet search engine.
ÂThis program helps to collate the information in a common language, drawing parallels and putting it together on one single page. Our program curates model organism specific databases to concurrently display a concise summary of the data, Liu said.
A user can first search for a gene or variant, Wang explains. Results may include what is known about this gene overall, whether or not that gene is associated with a disease, whether it is highly occurring in the general population and how it is affected by certain mutations.
ÂMARRVEL helps to facilitate analysis of human genes and variants by cross–disciplinary integration of 18 million records so we can speed up the discovery process through computation, Liu said. ÂAll this information is basically inaccessible unless researchers can access it efficiently and apply it to their own work to find causes, treatments and hopefully identify new diseases.Â
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries