Study finds cloth masks are inferior for protection against airborne viral
ANI Mar 07, 2022
Masks have been widely considered an important first-line defence against airborne transmission of the disease. But is every mask effective against the airborne virus? A recent study opened up about this.
The study was published in Physics of Fluids by AIP Publishing. Like many other viruses, COVID-19 too is transmitted primarily via particles carried in the air. An infected person breathes out particles containing the virus into the air, which can then be inhaled by another person, who then becomes infected.
Fuelled by the omicron variant, the latest wave of the pandemic prompted public health officials to recommend more protective face coverings because not all masks are created equal.
In the study, researchers from England, Germany, and France focussed their expertise -- and their microscopes -- on examining the efficacy of particle filtration by woven fabric, which, unlike material used in standard air filters and masks, consists of fibres twisted together into yarns. There are, therefore, two length scales: the diameters of the fibre and the yarn.
Using 3D imagery produced by confocal microscopy to see the airflow channels, the scientists simulated the airflow through these channels and calculated filtration efficiency for particles a micrometre and larger in diameter. The study concluded that, for particles in this size range, the filtration efficiency is low. "Masks are air filters, and woven fabrics, such as cotton, make for good jeans, shirts, and other apparel, but they are lousy air filters," said co-author Richard Sear, from the University of Surrey. "So, use woven fabric for clothing, and N95s or FFP2s or KF94s for masks."
Indeed, the flow simulations suggested that when a person breathed through cloth, most of the air flows through the gaps between the yarns in the woven fabric, bringing with it more than 90 per cent of the particles. "In other words, these relatively large gaps are responsible for cloth being a bad material to make air filters from," said Sear. "In contrast, the filtering layer of an N95 mask is made from much smaller, 5-micrometre fibres with gaps that are 10 times smaller, making it much better for filtering nasty particles from the air, such as those containing virus."
While earlier research revealed similar findings, this study represented the first one to simulate particles going directly through the gaps in woven fabric.
Sear added that good masks should feature the "two Fs: good filtration and good fit." "Surgical masks fit badly, so a lot of air goes unfiltered past the edges of the mask by the cheeks and nose," said Sear.
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries