• Profile
Close

Researchers study response of breast cancer cells due to recurrent stretching

ANI Oct 13, 2020

With the help of a novel testing platform, researchers are trying to understand the response of breast cancer cells to the recurrent stress that occurs in the lungs during breathing.

For our comprehensive coverage and latest updates on COVID-19 click here.


The study, led by a team of researchers from Purdue University, was published in the journal Advanced Functional Materials, unveiled the technology is designed to better understand the effects that the local tissue has on metastatic breast cancer to study how metastases grow in new tissue. "One of the key features of breast cancer is that most patients survive if the disease stays local, but there is a greater than 70 percent drop in survival if the cells have metastasised," said Luis Solorio, a Purdue assistant professor of engineering, who co-led the research team. "However, once the cells leave the primary tumour, they are often no longer responsive to the drugs that initially worked for the patient. We wanted to develop a system that could help us better understand how the physiology of a new tissue space affected tumour cells upon invasion into the new organ."

The Purdue researchers created a magnetically moving cell culturing system where the cancer cells can be grown in 3D on a suspended extracellular matrix protein that is abundant in early metastatic lung tissue in order to evaluate the impact of mechanical forces. They were able to incorporate the strain amplitude and rate of breathing in this tissue mimic. The researchers found that the cells quit dividing under these conditions. The research is published in Advanced Functional Materials. "Never before has the concept of motion been interrogated as a component of the tumour microenvironment," said Michael Wendt, a Purdue associate professor of medicinal chemistry and molecular pharmacology. "We now understand that healthy organs utilise motion to resist metastatic colonisation. The development of this microactuator system will not only continue to yield increased biological understanding, of metastasis, but it will also serve as a platform for us to better evaluate pharmacological inhibitors of the most lethal aspect of cancer progression."

Hyowon "Hugh" Lee, an associate professor of engineering and a researcher at the Birck Nanotechnology Center, co-led the research team. "This is the first attempt to engineer a cell culture system that can apply mechanical forces on a suspended tissue," Lee said. "Most bioreactors with mechanical stimulation capabilities rely on growing 2D cell culture on flat non-biological substrates, but we are using a custom magnetic actuator and suspending a layer of fibronectin to grow 3D cancer cells like a miniature tissue. "Our system better mimics the physiological environment without using artificial substrates. Using this platform, we show that certain cancer cells slow down their proliferation due to the cyclic stretching of breathing."

This work was the collaboration of five different laboratories to characterise the mechanical and biological properties of the new device. Sarah Calve, a Purdue adjunct professor of biomedical engineering, and Adrian Buganza Tepole, a Purdue assistant professor of mechanical engineering, interfaced with the mechanical characteristics of the stretching protein. They measured the response of the material to stretching and developing a mapping of the strains felt by the cancer cells at various locations on the device. Angel Enriquez, a doctoral student in Lee's lab, said, "One key takeaway has been the benefits of collaboration with people outside of your field of expertise and how they can provide more complete research." Sarah Libring, a doctoral student and a co-first author from Solorio's Lab, said, "It's been amazing to be part of the development of a new device like this because by bringing together the expertise of multiple professors and multiple labs, we are now able to study cancer cells on dynamically moving fibronectin fibrils that haven't been previously possible."

Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay