• Profile
Close

Researchers create human embryo-like entities with extraembryonic tissue

ANI Jul 21, 2023

Gastrulation is a "black box" of human development in which an embryo reorganises itself from a hollow spherical to a multilayered structure.


Because of bioethical considerations, human embryos are normally not cultured for more than 14 days, and gastrulation occurs between 17 and 21 days post-fertilisation.

Furthermore, current stem cell models that simulate gastrulation do not include the extraembryonic components that give birth to the yolk sac and placenta.

Researchers disclose a new approach for developing "peri-gastruloids," an embryo-like structure that includes one of the supporting tissues, the yolk sac, that was missing from prior models, in a study published in the journal Cell.

“While non-integrated models of human gastrulation and early organogenesis have been developed from primed human pluripotent stem cells, these models lack the extraembryonic cells that play vital roles in embryo patterning and morphogenesis,” says senior author Jun Wu, a stem cell biologist at the University of Texas Southwestern Medical Center.

“The presence of both embryonic and extraembryonic tissues enables researchers to examine the interactions between the epiblast, amnion, and yolk sac during gastrulation—an endeavour previously unattainable in humans.”

Instead of the more commonly used primed pluripotent stem cells, the researchers’ method used expanded pluripotent stem cells (EPSCs).

These cells have previously been shown to differentiate into both embryonic and extraembryonic tissue in experimental models.

By adding the proper growth factors to human EPSCs, they differentiated into these two types of tissues. The cells then self-organised into structures that resembled the human embryo, which the researchers refer to as “peri-gastruloids.”

Extraembryonic tissues release chemical signals that guide embryo development, which allows these peri-gastruloids to mimic several important processes that are considered part of this black-box period of development.

Peri-gastruloids develop the amniotic cavity that embryos live inside, and the yolk sac cavities that provide the embryos with blood supply. In addition, peri-gastruloids show early signs of organogenesis, such as neurulation, which marks the very beginning of central nervous system development.

The research team reports that their method is efficient and reproducible. In what they consider a small-scale trial, they were able to generate hundreds of peri-gastruloids.

“The power of this model stems from its ability to exploit the remarkable self-organising capacity of human EPSCs with minimal external intervention,” says Wu.

The team notes that peri-gastruloids are not viable because of the exclusion of trophoblasts that give rise to the placenta, which helps assuage the ethical concerns of this research.

This project followed international stem cell research guidelines and was approved by UT Southwestern’s Stem Cell Oversight Committee.

Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay