Model predicts likelihood of acute kidney injury requiring dialysis in patients with COVID-19
ASN Kidney Week 2020 Press Release Oct 27, 2020
A new artificial intelligence–based algorithm may help clinicians predict which patients with COVID-19 face a high risk of developing acute kidney injury (AKI) requiring dialysis. The research will be presented online during ASN Kidney Week 2020 Reimagined October 19–October 25.
Highlights
- In a recent study, a new algorithm achieved good performance for predicting which hospitalized patients will develop acute kidney injury requiring dialysis.
- Results from the study will be presented online during ASN Kidney Week 2020 Reimagined October 19–October 25.
Preliminary reports indicate that acute AKI is common in patients with COVID-19. Using data from more than 3,000 hospitalized patients with COVID-19, investigators at the Icahn School of Medicine at Mount Sinai trained a model based on machine learning, a type of artificial intelligence, to predict AKI that requires dialysis. Only information gathered within the first 48 hours of admission was included, so predictions could be made when patients were admitted.
The model demonstrated high accuracy (AUC of 0.79), and features that were important for prediction included blood levels of creatinine and potassium, age, and vital signs of heart rate and oxygen saturation. “A machine learning model using admission features had good performance for prediction of dialysis need. Models like this are potentially useful for resource allocation and planning during future COVID-19 surges,” said co-author Lili Chan, MD, MS. “We are in the process of deploying this model into our healthcare systems to help clinicians better care for their patients.”
This article is a news release from the American Society of Nephrology- Kidney Week 2020. Read the original here.
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries