UMMS epigenetics researcher Oliver Rando explores whether offspring inherit drug protection
University of Massachusetts Medical School News Mar 04, 2017
New study shows link between nicotine exposure in father and increased chemical tolerance in children.
A fatherÂs nicotine use may have a significant impact on his offsprings risk of some diseases. In a study published in the journal eLife, Oliver J. Rando, MD, PhD; Andrew R. Tapper, PhD; and colleagues demonstrate that mice born of fathers who are habitually exposed to nicotine inherit enhanced chemical tolerance and drug clearance abilities. These findings offer a powerful framework for exploring how information about a fatherÂs environmental exposure history is passed down to offspring.
ÂChildren born of fathers who have been exposed to nicotine are programmed to be not only more resistant to nicotine toxicity, but to other chemicals as well, said Dr. Rando, professor of biochemistry & molecular pharmacology.
Studies over the past decade in the field of epigenetics – the study of inheritable traits that are carried outside the genome – have provided unexpected support to the notion that the environmental conditions experienced by a parent can affect disease risk and other features of future generations. In mammals, many of these studies have focused on interactions between the male parent and the offspring – paternal effects – as these are in many ways easier to investigate than maternal effects. Specifically, a number of studies have linked paternal diet to metabolic changes in offspring, while others link paternal stress to anxiety–like behaviors in the next generation. Despite the growing number of these studies, only a small number of paternal exposures have been explored rigorously in the lab. In addition, it has remained unclear in these studies whether the offspring response is specific for the paternal exposure, or whether it is a more generic response to a fatherÂs overall quality of life.
To address this question, Rando; Dr. Tapper, professor of psychiatry; and colleagues set out to determine how precise the response is for the environment experienced by the male parent, by looking at a single molecular interaction. Providing male mice with access to nicotine, researchers sought to learn whether their offspring were more or less sensitive to nicotine, and whether the offspring response was specific to nicotine or extended to other molecules.
What researchers found is that the offspring of nicotine–exposed fathers, compared to the offspring of fathers that were never exposed to nicotine, were protected from toxic levels of nicotine. Researchers then tested whether this resistance was specific for nicotine by treating both sets of offspring with cocaine, which acts via a wholly distinct molecular pathway than nicotine. Surprisingly, the children of nicotine–exposed fathers were also protected from cocaine. This multitoxin resistance is likely a result of enhanced drug metabolism in the liver, and corresponds to an increase in expression levels of genes involved in drug metabolism. These genes were also packaged in a more open and accessible configuration in the liver cells, allowing for increased expression.
To determine if multiple, distinct molecules are capable of affecting drug resistance in the next generation, Rando and colleagues treated male mice with another bioactive compound, mecamylamine, which blocks nicotine receptors and is sometimes used to help people stop smoking. Surprisingly, offspring of these mice exhibited the same chemical resistance as those exposed to nicotine.
The next step for Rando and colleagues is to determine how many channels of information are being passed down from parent to offspring.
Go to Original
A fatherÂs nicotine use may have a significant impact on his offsprings risk of some diseases. In a study published in the journal eLife, Oliver J. Rando, MD, PhD; Andrew R. Tapper, PhD; and colleagues demonstrate that mice born of fathers who are habitually exposed to nicotine inherit enhanced chemical tolerance and drug clearance abilities. These findings offer a powerful framework for exploring how information about a fatherÂs environmental exposure history is passed down to offspring.
ÂChildren born of fathers who have been exposed to nicotine are programmed to be not only more resistant to nicotine toxicity, but to other chemicals as well, said Dr. Rando, professor of biochemistry & molecular pharmacology.
Studies over the past decade in the field of epigenetics – the study of inheritable traits that are carried outside the genome – have provided unexpected support to the notion that the environmental conditions experienced by a parent can affect disease risk and other features of future generations. In mammals, many of these studies have focused on interactions between the male parent and the offspring – paternal effects – as these are in many ways easier to investigate than maternal effects. Specifically, a number of studies have linked paternal diet to metabolic changes in offspring, while others link paternal stress to anxiety–like behaviors in the next generation. Despite the growing number of these studies, only a small number of paternal exposures have been explored rigorously in the lab. In addition, it has remained unclear in these studies whether the offspring response is specific for the paternal exposure, or whether it is a more generic response to a fatherÂs overall quality of life.
To address this question, Rando; Dr. Tapper, professor of psychiatry; and colleagues set out to determine how precise the response is for the environment experienced by the male parent, by looking at a single molecular interaction. Providing male mice with access to nicotine, researchers sought to learn whether their offspring were more or less sensitive to nicotine, and whether the offspring response was specific to nicotine or extended to other molecules.
What researchers found is that the offspring of nicotine–exposed fathers, compared to the offspring of fathers that were never exposed to nicotine, were protected from toxic levels of nicotine. Researchers then tested whether this resistance was specific for nicotine by treating both sets of offspring with cocaine, which acts via a wholly distinct molecular pathway than nicotine. Surprisingly, the children of nicotine–exposed fathers were also protected from cocaine. This multitoxin resistance is likely a result of enhanced drug metabolism in the liver, and corresponds to an increase in expression levels of genes involved in drug metabolism. These genes were also packaged in a more open and accessible configuration in the liver cells, allowing for increased expression.
To determine if multiple, distinct molecules are capable of affecting drug resistance in the next generation, Rando and colleagues treated male mice with another bioactive compound, mecamylamine, which blocks nicotine receptors and is sometimes used to help people stop smoking. Surprisingly, offspring of these mice exhibited the same chemical resistance as those exposed to nicotine.
The next step for Rando and colleagues is to determine how many channels of information are being passed down from parent to offspring.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries