• Profile
Close

Type 1 diabetes may affect brain development, beginning in early childhood

American Diabetes Association Press Releases Jun 12, 2019

Children with early-onset type 1 diabetes (T1D) and poor glycemic control have slower growth of areas in the brain associated with mild cognitive deficits compared to children without diabetes, according to the study, “ADA Presidents' Select Abstract: Type 1 Diabetes and the Developing Brain—A Longitudinal Study of Brain Growth by the Diabetes Research in Children Network (DirecNet),” presented today at the American Diabetes Association’s® (ADA’s) 79th Scientific Sessions® at the Moscone Convention Center in San Francisco. The study found that children with early-onset T1D have mild but significant differences in total brain and regional gray and white matter growth compared to children without diabetes.

Over time, T1D can cause complications in multiple organ systems, including the retina, cardiovascular, kidneys and peripheral nervous system. Research also suggests the glycemic fluctuations of hypoglycemia and hyperglycemia associated with T1D can negatively affect brain development. Despite improved glycemic control due to emerging technologies and newer insulins, growing evidence demonstrates that individuals with T1D are at risk for cognitive dysfunction.

As part of a multi-site study of the Diabetes Research in Children Network (DirecNet), researchers aimed to determine the extent to which glycemic exposure adversely impacts the developing brain in children with early-onset T1D. The study enrolled 138 children with T1D with a median age of seven years. The participants had a disease duration on average of 2.4 years at the beginning of the study. Researchers conducted structural magnetic resonance imaging (MRI) studies on the participants’ brains and compared the results to those of a control group consisting of 66 age-matched children (average age of seven years) who did not have diabetes.

The MRIs were performed at three time points (baseline, 18 months and approximately 2.9 years after the second visit), and white matter (WM) and gray matter (GM) volumes in various brain regions-of-interest were determined. Total cumulative hyperglycemic exposure was determined (lifetime HbA1c) from the time of diagnosis in the T1D group.

Researchers found that the group with T1D had slower growth of total cortical and subcortical GM and WM than the control group at all time points. A set of metabolically active brain regions that form the “default mode network,” which is associated with other brain disorders, showed less growth in the T1D group compared to the control group. These regions of slower growth were associated with higher lifetime HbA1c values.

“With an ever-increasing number of people living to old age, diabetes-related cognitive dysfunction could have challenging future public health implications,” said Nelly Mauras, MD, co-principal investigator, chief of the division of endocrinology, diabetes & metabolism at the Nemours Children’s Health System in Jacksonville, FL, and professor of pediatrics at the Mayo College of Medicine. “Although there have been advances in new insulin and technologies that can significantly improve care, children with diabetes are still exposed to significant hyperglycemia and hypoglycemia, which will continue to confer a risk to the brain. The young children with type 1 diabetes in our study had significant differences in brain structure and growth compared to the control group, and poor glycemic control may increase risk for changes in brain structure over time. However, the variability in outcomes remains unexplained. Therefore, understanding these early effects is a necessary step towards understanding effects later in adulthood and in developing strategies for reducing risk of brain-associated complications in T1D. Whether scrupulous maintenance of near-normoglycemia with advanced diabetes technologies will have a positive impact on these findings is being actively investigated.”

Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay