• Profile
Close

The protein TAZ sends "mixed signals" to stem cells

Keck School of Medicine of USC - Research News Sep 07, 2017

Just as beauty exists in the eye of the beholder, a signal depends upon the interpretation of the receiver. According to new USC research published in the journal Stem Cell Reports, a protein called TAZ can convey very different signals – depending upon not only which variety of stem cell, but also which part of the stem cell receives it.

When it comes to varieties, some stem cells are “naïve” blank slates; others are “primed” to differentiate into certain types of more specialized cells. Among the truly naïve are mouse embryonic stem cells (ESCs), while the primed variety includes the slightly more differentiated mouse epiblast stem cells (EpiSCs) as well as so–called human “ESCs” – which may not be true ESCs at all.

In the new study, PhD student Xingliang Zhou and colleagues in the laboratory of Qi–Long Ying demonstrated that naïve mouse ESCs don’t require TAZ in order to self–renew and produce more stem cells. However, they do need TAZ in order to differentiate into mouse EpiSCs.

The scientists observed an even more nuanced situation for the primed varieties of stem cells: mouse EpiSCs and human ESCs. When TAZ is located in the nucleus, this prompts primed stem cells to differentiate into more specialized cell types—a response similar to that of the naïve cells. However, if TAZ is in the cytoplasm, or the region between the nucleus and outer membrane, primed stem cells have the opposite reaction: they self–renew.

“TAZ has stirred up a lot of controversy in our field, because it appears to produce diverse and sometimes opposite effects in pluripotent stem cells,” said Ying, senior author and associate professor of stem cell biology and regenerative medicine. “It turns out that TAZ can indeed produce opposite effects, depending upon both its subcellular location and the cell type in question.”

First author Zhou added: “TAZ provides a new tool to stimulate stem cells to either differentiate or self–renew. This could have important regenerative medicine applications, including the development of a better way to generate the desired cell types for cell replacement therapy.”
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay