Study on disc degeneration could revolutionize treatment options for lower back pain
Baylor Scott & White Health News May 03, 2017
Baylor Scott & White Research Institute researcher describes molecular pathways that lead to breakdown of soft tissues.
New research detailing the molecular mechanisms involved in the breakdown of the soft tissue discs of the spine has the potential to help millions suffering the debilitating back pain, and may provide opportunities for advanced, minimally invasive treatments. The research was conducted by Jason H. Huang, MD, chairman of neurosurgery for Baylor Scott & White Health Central Texas Division and researcher with the Baylor Scott & White Research Institute, and published in the Journal of Neurosurgery: Spine April 7 in a paper entitled, "Ectopic expression of SMURF2 and acceleration of age–related intervertebral disc degeneration in a mouse model."
"This research has the potential to develop technology and therapies that could not only treat disc denegation, but also potentially reverse its course," Dr. Huang said.
Leveraging previous research on SMURF2, a gene that has been implicated in tumor formation and disease progression, the study created an overexpression of the protein to better understand disc degeneration and the molecular mechanisms involved in the breakdown of the soft tissue discs in the human spine.
By understanding the molecular pathways that lead to disc degradation, researchers can develop pharmacological agents and other forms of injectable therapies that may be used in the future to block degenerative mechanisms or promote remodeling processes, which would save millions of people each year from invasive back surgeries or debilitating pain.
"This is a first step in an exciting research journey that will hopefully reduce that burden as well as the number of patients having to undergo invasive surgery, thereby making the population much healthier," Dr. Huang said. "We spend more than $100 billion a year to treat low back pain, which is a significant cost to our society."
This study phase advances more than three years of research on SMURF2 genes. The next phase of research, which applies the findings of SMURF2 to human tissue, will be published later this year. Future goals for research include creating pharmacological treatments at Baylor Scott & White Research Institute for use in human clinical trials.
Go to Original
New research detailing the molecular mechanisms involved in the breakdown of the soft tissue discs of the spine has the potential to help millions suffering the debilitating back pain, and may provide opportunities for advanced, minimally invasive treatments. The research was conducted by Jason H. Huang, MD, chairman of neurosurgery for Baylor Scott & White Health Central Texas Division and researcher with the Baylor Scott & White Research Institute, and published in the Journal of Neurosurgery: Spine April 7 in a paper entitled, "Ectopic expression of SMURF2 and acceleration of age–related intervertebral disc degeneration in a mouse model."
"This research has the potential to develop technology and therapies that could not only treat disc denegation, but also potentially reverse its course," Dr. Huang said.
Leveraging previous research on SMURF2, a gene that has been implicated in tumor formation and disease progression, the study created an overexpression of the protein to better understand disc degeneration and the molecular mechanisms involved in the breakdown of the soft tissue discs in the human spine.
By understanding the molecular pathways that lead to disc degradation, researchers can develop pharmacological agents and other forms of injectable therapies that may be used in the future to block degenerative mechanisms or promote remodeling processes, which would save millions of people each year from invasive back surgeries or debilitating pain.
"This is a first step in an exciting research journey that will hopefully reduce that burden as well as the number of patients having to undergo invasive surgery, thereby making the population much healthier," Dr. Huang said. "We spend more than $100 billion a year to treat low back pain, which is a significant cost to our society."
This study phase advances more than three years of research on SMURF2 genes. The next phase of research, which applies the findings of SMURF2 to human tissue, will be published later this year. Future goals for research include creating pharmacological treatments at Baylor Scott & White Research Institute for use in human clinical trials.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries