• Profile
Close

Study examines use of bitter substances to halt preterm labor

University of Massachusetts Medical School News Aug 09, 2017

Ronghua ZhuGe and colleagues found that exposing bitter taste receptors in the uterus to bitter substances may stop contractions.
New research by Ronghua ZhuGe, PhD, associate professor of microbiology & physiological systems, and colleagues offers insight into the mechanisms of uterine contractions during labor and may lead to new treatments to reduce instances of preterm birth, a leading cause of neonatal mortality and morbidity.

In a study published in The FASEB Journal, Dr. ZhuGe and colleagues found that exposing bitter taste receptors (TAS2Rs) in the uterus to certain substances may stop contractions that occur during premature labor.

“The biological mechanism of labor initiation remains unknown, and a large percentage of preterm pregnancies do not respond well to current medications,” said ZhuGe, senior author on the study.

“The bitter taste receptors that we have found on uterine muscle could be one more piece of the puzzle to understand the onset of labor, both at term and preterm, and develop new therapeutics for preterm labor,” ZhuGe said.

ZhuGe and colleagues from UMass Medical School, University of Rhode Island, Wayne State University, and the College of Animal Science and Technology in China examined human and mouse uterine myometrium tissue. The researchers first exposed the tissue to native hormones such as oxytocin and chemical compounds to make it contract, mimicking normal or premature labor. They then exposed the tissue to bitter substances.

By activating the bitter taste receptors in the uterus, the bitter substances relaxed the contracted uterine muscle tissue more completely than the current drugs used to prevent preterm labor in humans. The researchers also found that giving mice bitter substances before they showed any premature contractions prevented them from having early deliveries, and this protection is largely lost in mice without a functioning TAS2R signaling pathway.

“Collectively, our results reveal that activation of the canonical TAS2R signaling system in myometrial cells produces profound relaxation of myomentrium precontracted by a broad spectrum of contractile agonists, and that targeting TAS2Rs is an attractive approach to developing effective tocolytics for preterm birth management,” ZhuGe said.
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay