PET/CT helps predict therapy effectiveness in pediatric brain tumors
The Society of Nuclear Medicine and Molecular Imaging (SNMMI) News May 22, 2017
Brain cancers are difficult to treat, and it can be hard to predict whether a therapy will be effective. When the patient is a child, itÂs even more important to predict the potential effectiveness of a drug before beginning treatment. In this first ever molecular drug–imaging study in children, researchers in The Netherlands used whole–body positron emission tomography/computed tomography (PET/CT) scans to determine whether bevacizumab (Avastin) treatment of diffuse intrinsic pontine glioma (DIPG) in children is likely to be effective.
The study was published in the May 2017 issue of The Journal of Nuclear Medicine.
ÂChildren with DIPG have a very poor prognosis, with less than 10 percent of the patients surviving two years from diagnosis, explains Guus A. van Dongen, PhD, of VU University, Medical Center, Amsterdam, The Netherlands. ÂThese tumors are resistant to all kinds of therapies. Chemotherapy, as well as new targeted therapies, may not reach the tumor due to the location within the brainstem.Â
For the study, researchers investigated whether bevacizumab can reach the tumor in children with DIPG by measuring the tumor uptake of zirconium–89 (Zr–89)–labeled bevacizumab with PET. In addition, they evaluated the safety of the procedure and determined the optimal timing of imaging.
Two weeks after completing radiotherapy, seven patients (age range: 6–17) were given whole–body PET/CT scans performed at 1, 72 and 144 hours post–injection. The optimal moment of scanning was found to be 144 hours post–injection. The patients also underwent contrast (gadolinium)–enhanced MRI.
ÂThe results showed that indeed there is considerable heterogeneity in uptake of Zr–89–labeled bevacizumab among patients and within tumors, Van Dongen points out. ÂThis non–invasive in vivo quantification of drug distribution and tumor uptake may help to predict therapeutic potential, as well as toxicity, and could help develop strategies for improving drug delivery to tumors.Â
Van Dongen adds, ÂChildren with brain tumors and other solid cancers are particularly likely to benefit from molecular drug imaging, as drugs without therapeutic effect – based on a lack of drug–uptake in the tumor – may cause life–long side effects. Molecular drug imaging will open avenues for administering the right drug to the right patient at the most appropriate stage of the disease.Â
Go to Original
The study was published in the May 2017 issue of The Journal of Nuclear Medicine.
ÂChildren with DIPG have a very poor prognosis, with less than 10 percent of the patients surviving two years from diagnosis, explains Guus A. van Dongen, PhD, of VU University, Medical Center, Amsterdam, The Netherlands. ÂThese tumors are resistant to all kinds of therapies. Chemotherapy, as well as new targeted therapies, may not reach the tumor due to the location within the brainstem.Â
For the study, researchers investigated whether bevacizumab can reach the tumor in children with DIPG by measuring the tumor uptake of zirconium–89 (Zr–89)–labeled bevacizumab with PET. In addition, they evaluated the safety of the procedure and determined the optimal timing of imaging.
Two weeks after completing radiotherapy, seven patients (age range: 6–17) were given whole–body PET/CT scans performed at 1, 72 and 144 hours post–injection. The optimal moment of scanning was found to be 144 hours post–injection. The patients also underwent contrast (gadolinium)–enhanced MRI.
ÂThe results showed that indeed there is considerable heterogeneity in uptake of Zr–89–labeled bevacizumab among patients and within tumors, Van Dongen points out. ÂThis non–invasive in vivo quantification of drug distribution and tumor uptake may help to predict therapeutic potential, as well as toxicity, and could help develop strategies for improving drug delivery to tumors.Â
Van Dongen adds, ÂChildren with brain tumors and other solid cancers are particularly likely to benefit from molecular drug imaging, as drugs without therapeutic effect – based on a lack of drug–uptake in the tumor – may cause life–long side effects. Molecular drug imaging will open avenues for administering the right drug to the right patient at the most appropriate stage of the disease.Â
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries