Penn study finds gray matter density increases during adolescence
Penn Medicine News Jun 01, 2017
Study reveals new methods of characterizing differences between youth and adult, male and female brains.
For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain  the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, memory, emotions, speech, decision making, and self–control  declines in adolescence, a finding derived mainly from studies of gray matter volume and cortical thickness. Since it has been well–established that larger brain volume is associated with better cognitive performance, it was puzzling that cognitive performance shows a dramatic improvement from childhood to young adulthood at the same time that brain volume and cortical thickness decline.
A new study published by Penn Medicine researchers this month and featured on the cover of the Journal of Neuroscience may help resolve this puzzle, revealing that while volume indeed decreases from childhood to young adulthood, gray matter density actually increases. Their findings also show that while females have lower brain volume, proportionate to their smaller size, they have higher gray matter density than males, which could explain why their cognitive performance is comparable despite having lower brain volume. Thus, while adolescents lose brain volume, and females have lower brain volume than males, this is compensated for by increased density of gray matter. ÂIt is quite rare for a single study to solve a paradox that has been lingering in a field for decades, let alone two paradoxes, as was done by Gennatas in his analysis of data from this large–scale study of a whole cohort of youths, said Ruben Gur.
ÂWe now have a richer, fuller concept of what happens during brain development and now better understand the complementary unfolding processes in the brain that describe what happens.Â
The study was led by Ruben Gur, PhD, professor of Psychiatry, Neurology, and Radiology in the Perelman School of Medicine at the University of Pennsylvania, Raquel Gur, MD, PhD, a professor of Psychiatry, Neurology, and Radiology, and Efstathios Gennatas, MBBS, a doctoral student of neuroscience working in the Brain Behavior Laboratory at Penn.
According to Gur, the study findings may better explain the extent and intensity of changes in mental life and behavior that occur during the transition from childhood to young adulthood.
ÂIf we are puzzled by the behavior of adolescents, it may help to know that they need to adjust to a brain that is changing in its size and composition at the same time that demands on performance and acceptable behavior keep scaling up, Gur added.
In the study, the researchers evaluated 1,189 youth between the ages of 8 and 23 who completed magnetic resonance imaging as part of the Philadelphia Neurodevelopmental Cohort, a community–based study of brain development that includes rich neuroimaging and cognitive data, to look at age–related effects on multiple measures of regional gray matter, including gray matter volume, gray matter density, and cortical thickness. Neuroimaging allowed the researchers to derive several measures of human brain structure in a noninvasive way. Observing such measures during development allowed the researchers to study the brain at different ages to characterize how a childÂs brain differs from an adultÂs.
Further study is required to fully characterize the biological underpinnings of different MRI–derived measures by combining neuroimaging and brain histology. The studyÂs findings in healthy people can also help researchers understand the effects of brain disorders in males and females as they evolve during adolescence.
Go to Original
For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain  the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, memory, emotions, speech, decision making, and self–control  declines in adolescence, a finding derived mainly from studies of gray matter volume and cortical thickness. Since it has been well–established that larger brain volume is associated with better cognitive performance, it was puzzling that cognitive performance shows a dramatic improvement from childhood to young adulthood at the same time that brain volume and cortical thickness decline.
A new study published by Penn Medicine researchers this month and featured on the cover of the Journal of Neuroscience may help resolve this puzzle, revealing that while volume indeed decreases from childhood to young adulthood, gray matter density actually increases. Their findings also show that while females have lower brain volume, proportionate to their smaller size, they have higher gray matter density than males, which could explain why their cognitive performance is comparable despite having lower brain volume. Thus, while adolescents lose brain volume, and females have lower brain volume than males, this is compensated for by increased density of gray matter. ÂIt is quite rare for a single study to solve a paradox that has been lingering in a field for decades, let alone two paradoxes, as was done by Gennatas in his analysis of data from this large–scale study of a whole cohort of youths, said Ruben Gur.
ÂWe now have a richer, fuller concept of what happens during brain development and now better understand the complementary unfolding processes in the brain that describe what happens.Â
The study was led by Ruben Gur, PhD, professor of Psychiatry, Neurology, and Radiology in the Perelman School of Medicine at the University of Pennsylvania, Raquel Gur, MD, PhD, a professor of Psychiatry, Neurology, and Radiology, and Efstathios Gennatas, MBBS, a doctoral student of neuroscience working in the Brain Behavior Laboratory at Penn.
According to Gur, the study findings may better explain the extent and intensity of changes in mental life and behavior that occur during the transition from childhood to young adulthood.
ÂIf we are puzzled by the behavior of adolescents, it may help to know that they need to adjust to a brain that is changing in its size and composition at the same time that demands on performance and acceptable behavior keep scaling up, Gur added.
In the study, the researchers evaluated 1,189 youth between the ages of 8 and 23 who completed magnetic resonance imaging as part of the Philadelphia Neurodevelopmental Cohort, a community–based study of brain development that includes rich neuroimaging and cognitive data, to look at age–related effects on multiple measures of regional gray matter, including gray matter volume, gray matter density, and cortical thickness. Neuroimaging allowed the researchers to derive several measures of human brain structure in a noninvasive way. Observing such measures during development allowed the researchers to study the brain at different ages to characterize how a childÂs brain differs from an adultÂs.
Further study is required to fully characterize the biological underpinnings of different MRI–derived measures by combining neuroimaging and brain histology. The studyÂs findings in healthy people can also help researchers understand the effects of brain disorders in males and females as they evolve during adolescence.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries