• Profile
Close

New target found to attack an incurable brain tumor in children

Ann & Robert H. Lurie Children's Hospital of Chicago News Jun 09, 2017

Restoring the tumor suppressor gene p16 slows tumor growth in vitro.
A study published in the journal Molecular Cancer Research reveals that a tumor suppressor gene p16 is turned off by a histone mutation (H3.3K27M), which is found in up to 70 percent of childhood brain tumors called diffuse intrinsic pontine glioma (DIPG). This insight suggests that restoring p16 is a promising therapeutic strategy. The authors have demonstrated that this can be accomplished in vitro using a drug that is approved for treatment of adult leukemia and other cancers.

Histone is a protein that acts like a spool for DNA, helping to package the six–foot long DNA strand into the tiny nucleus of every cell. Histones also help regulate which genes turn on and off, a process that goes awry when there is a histone mutation.

“Using a genetic mouse model of DIPG, we found that the histone mutation turns off p16, which is a gene that acts like a break on dividing cells,” says senior author Oren J. Becher, MD, from Stanley Manne Children’s Research Institute at Ann & Robert H. Lurie Children’s Hospital of Chicago. “When p16 is repressed, cells can divide faster, which gives rise to a tumor. We also found that in DIPG, the histone mutation cooperates with overactive growth factor (called PDGF) signaling, which further accelerates brain stem tumor formation.”

The discovery of the histone mutation in 2012 has opened up a new line of research and a search for new treatment targets.

Becher and colleagues discovered that in vitro the p16 gene can be turned back on using a drug that inhibits DNA methylation – a mechanism that typically acts as an off switch for the gene. The result was restored p16 function, which slowed down tumor growth.

“This was an unexpected finding,” says Becher, the Rory David Deutsch Scholar and oncologist at Lurie Children’s, as well as Associate Professor of Pediatrics at Northwestern University Feinberg School of Medicine. “We first tried a histone methylation inhibitor – a promising new class of cancer drugs – but that did not restore p16 or had any effect on tumor growth. But when we used a DNA methylation inhibitor, it worked. We now have early evidence that targeting DNA methylation may be useful in restoring p16, and thereby arresting tumor growth. We need more research to confirm this finding in animal models before studying this strategy in children with DIPG. This is incremental progress.”
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay