• Profile
Close

New heart disease risk genes point to flaws in blood vessel walls

Penn Medicine News May 25, 2017

Penn co–led study aims to identify targets for cardiovascular treatments.
Despite dozens of regions in the genome associated with coronary artery disease (CAD), most of the genetic components of heart diseases are not fully understood, suggesting that more genes are out there to be found. A team led by researchers from the Perelman School of Medicine at the University of Pennsylvania, Stanford University, and Cambridge University found 15 new risk genes for coronary artery disease.

They published their results online in the journal Nature Genetics.

They studied genetic variants across the genome in 250,736 participants in total, including 88,192 patients with CAD, and identified 15 new risk genes providing new insights about the cause of CAD. Overall they found that many of these risk genes are associated with the myriad of functions taking place in cells lining blood vessels, blood clotting, inflammation and how cells bind with each other.

“Coronary artery disease tends to cluster in families and has a strong genetic basis; however, we do not fully understand its genetic basis,” said senior author Danish Saleheen, PhD, an assistant professor of Epidemiology and Biostatistics at Penn. “We conducted the largest genetic analyses on coronary artery disease to date, including analyses of people of European, African, South Asian, and East Asian heritages.”

The team identified the new genetic CAD associations via SNPs – or single–nucleotide polymorphisms, places in genes in which the DNA building blocks differ from person to person by only one block, or nucleotide. They found CAD–related SNPs in or near genes governing such pathways as stickiness of cells, coagulation and inflammation, and the differentiation of smooth muscle cells.

“Next we aim to identify the exact biological mechanisms at these 15 novel sites in the genome that lead to development of CAD,” Saleheen said. “Greater understanding of such pathways should ultimately lead to development of new therapies for CAD.”
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay