• Profile
Close

New gene muta­tions found in white blood cells in pa­tients with rheum­at­oid arth­ritis

University of Helsinki Faculty of Medicine News Jun 28, 2017

Gene mutations accumulating in cells are typical of the development of cancer. Finnish researchers found that a similar accumulation of mutations occurs also in some patients with rheumatoid arthritis.
Gene mutations that accumulate in somatic cells have a significant impact on the development of cancer, yet no studies on their involvement in the pathogenesis of autoimmune diseases have previously been conducted. A research project conducted in cooperation by the University of Helsinki and the Helsinki University Central Hospital found that somatic mutations were present also in patients with rheumatoid arthritis.

Published in the Nature Communications journal, the study found mutations in genes important to the immune defence system in white cells separated from blood samples taken from patients recently diagnosed with rheumatoid arthritis.

“It may be possible that these mutations affect the regulation of the inflammatory process,” says Satu Mustjoki, a research professor at the Finnish Cancer Institute and the University of Helsinki.

Altogether 85 patients with recently diagnosed rheumatoid arthritis participated in the study, in addition to which there were 20 healthy control subjects. By utilising the latest deep sequencing techniques, the researchers identified mutations in one fifth of the patients. All identified mutations were located in cells known as killer cells, or cytotoxic CD8+ T cells. No mutations were found in helper cells, or CD4+ T cells.

“One somatic mutation was found in a single healthy control subject, which means that the finding is not entirely arthritis specific,” notes Professor Marjatta Leirisalo–Repo, a specialist in rheumatology.

Enlarged T cell clones were found in all patients with rheumatoid arthritis concomitant with somatic mutations. Further investigation proved that the mutations were limited to these enlarged cell clones.

“This indicates that mutations are formed only in mature T cells, not at the stem cell level,” say BM Paula Savola and PhD Tiina Kelkka, the main authors of the article. “If mutations were formed at the earlier differentiation stage, they would have been present in CD8+ T cells and CD4+ helper cells expressing other T cell receptor types as well.”

The mutations were found to be permanent, since identical clones and mutations were found in the patients’ white blood cells several years after the original finding.

“For now, there is no certainty on how these mutations affect the regulation of chronic inflammations. They may be, for lack of a better word, ‘genomic scars’ formed as a result of the activation of the immune defence system,” says Mustjoki.

“In any case, this research project revealed a new connection on the molecular level between autoimmune diseases and cancer, which brings us one step closer to understanding these diseases.”

The starting point for this project was earlier findings related to LGL leukaemia made by Mustjoki's research group. In LGL leukaemia, somatic mutations often found in the STAT3 gene and located also in the cytotoxic T cells of patients cause a slowly progressing blood disorder, in addition to which they predispose patients to autoimmune diseases. The most common autoimmune disease related to LGL leukaemia is rheumatoid arthritis.
Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay