• Profile
Close

Identified: 15 genes that trigger rapid growth of head and neck squamous cell carcinoma

MedicalXpress Breaking News-and-Events Mar 16, 2020

A team of researchers affiliated with several institutions in Canada has identified 15 tumor suppressor genes that can trigger rapid growth of human head and neck squamous cell carcinoma (HNSCC) when they mutate. In their paper published in the journal Science, the group describes their reverse genetic CRISPR screen, which allowed them to analyze almost 500 long-tail genetic mutations that lead to HNSCC.

HNSCC is the sixth-most common type of human cancer, and sadly, has a low survival rate. As the researchers note, to date, most studies looking into a cure have focused on the few that mutate at a very high rate. This has given them a high profile. But there is another class of slower mutating gene that can lead to tumors in low numbers of patients. Prior research has shown that there are hundreds of these so called "long tail" genes, many of which have not been identified. In this new effort, the researchers used a reverse genetic CRISPR screen that allowed them to identify 15 of them.

The work focused on tumor suppressor genes that regulate . When something goes wrong with them, such as a mutation, they lose their function and thus cannot prevent the cells they were regulating from mutating out of control. More specifically, the team focused their attention on the genes in cells that are part of the notch signaling pathway—in particular, those cells that develop into HNSCC tumors. All mammals have four kinds of notch receptors, which are used for communications between cells. The team carried out in vivo CRISPR screening on 484 long-tail gene mutations that had triggered the development of tumors in mice and identified 15 . They then looked for the same types of mutations in human long-tail mutations and were able to calculate percentages for each.

The researchers conclude that 67% of human HNSCC cases occur along the notch signaling pathway, which suggests notch inactivation is a distinguishing characteristic of HNSCC.

—Bob Yirka, Medical Xpress

Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay