• Profile
Close

Hydrogel helps heal without additives

Rice University News Mar 15, 2018

Sometimes when you’re invested in a project, you fail to notice things that turn out to be significant.

Researchers in the Rice lab of chemist and bioengineer Jeffrey Hartgerink had just such an experience with the hydrogels they developed as a synthetic scaffold to deliver drugs and encourage the growth of cells and blood vessels for new tissue.

To do so, they often tested the gels by infusing them before injection with bioactive small molecules, cells, or proteins. What they didn’t realize until recently was that the hydrogel itself has significant therapeutic qualities.

The lab reported in the Elsevier journal Biomaterials that a particular hydrogel, a self-assembling multidomain peptide (MDP) with the amino acid sequence K2(SL)6K2, is indeed bioactive.

Once Hartgerink and his team started to investigate the phenomenon, they found that even without additives their MDP is rapidly infiltrated by host cells, provokes a temporary inflammatory response, does not develop a fibrous capsule, supports the infiltration of a mature vascular network, and recruits nerve fibers.

“We were surprised to find this strong effect in what we had previously considered to be a control peptide,” Hartgerink said. “As it turned out, the inherent structure and chemistry of this peptide, despite being quite simple, results in a strong biological response.”

The hydrogel, which can be delivered through a syringe, is designed to degrade over 6 weeks and leave behind healthy tissue. Because the peptides are designed from the bottom up to mimic their natural counterparts, the lab found they create an optimal environment for the body’s own systems to encourage healing.

The researchers reported the natural inflammatory response when a foreign substance like a hydrogel is introduced into a system and draws cells that secrete proteins involved in cellular infiltration, scaffold degradation, vascularization, and innervation. Tests on injected hydrogel showed a “statistically significant” increase in the presence of cytokines known to provoke an inflammatory response, as well as an increase in anti-inflammatory agents, both of which remained steady after day 3 and through 2 weeks.

That, Hartgerink said, indicates the hydrogel appears to harness the body’s innate capacity to heal as it transitions from a pro-inflammatory to a pro-healing environment.

“As we eventually discovered, this exceptional peptide allows the body to carry out healing on its own, but with a significant boost,” he said. “We believe the key step is the initial, and very rapid, cell infiltration. Once these cells are on location, they produce everything they need for an impressive regenerative response, including angiogenesis and neurogenesis.”

Hartgerink said the lab is pursuing application of the peptide for wound-healing in diabetic ulcers.

Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay