By decoding how HPV causes cancer, researchers find a new potential treatment strategy
Georgetown University Medical Center News Oct 17, 2017
A study that teases apart the biological mechanisms by which human papillomaviruses (HPV) cause cancer has found what researchers at Georgetown University Medical Center say is a new strategy that might provide targeted treatment for these cancers.
HPVs are responsible for the majority of cervical cancer and a substantial portion of head and neck and anal cancers, but therapy available to date is surgery and non-specific chemotherapy.
The new study, published October 2 in the journal Oncotarget, found that E6, an oncoprotein produced by the virus, interacts with several other molecules in host cells in a manner that ensures infected cells cannot die. If they are immortal and continue to multiply, cancer develops.
ÂThere is no targeted treatment now for these cancers since German virologist Harald zur Hausen, PhD, discovered in 1983 that HPV can cause cervical cancer. Recently, the numbers of HPV-linked head and neck cancers have increased in the U.S. Now we have a chance to develop and test a very specific, potentially less toxic way to stop these cancers, said the studyÂs lead author, Xuefeng Liu, MD, associate professor of pathology at Georgetown University Medical Center. Liu is director of Telomeres and Cell Immortalization for the medical centerÂs Center for Cell Reprogramming.
Liu and his team have previously found that the HPV E6 oncoprotein interferes with the well-known p53 tumor suppressor to increase telomerase activity that extends the life span of infected cells. A telomerase is a protein that allows a cell to divide indefinitely when it would have stopped after a certain number of divisions.
In this study, researchers found that E6 also interacts with myc, a protein produced by the Myc gene, which controls gene expression in all healthy cells. They concluded that telomerase activity is dependent on E6-myc proteins hooking on to each other.
This means, said Liu, that designing a small molecule that stops E6 from joining up with myc should shut down persistent activation of telomerase. A small molecule could bind to E6 in the same spot that myc would, or bind on to myc in the same spot that E6 would, thus preventing an E6-myc complex.
ÂThis small molecule would not be toxic to all normal cells or, importantly, to master stem cells, because myc would not be affected, said Liu. ÂIt could be a unique treatment, targeted specifically to HPV cancers.Â
Georgetown researchers are now working on a prototype chemical to interfere with E6/Myc binding.
Go to Original
HPVs are responsible for the majority of cervical cancer and a substantial portion of head and neck and anal cancers, but therapy available to date is surgery and non-specific chemotherapy.
The new study, published October 2 in the journal Oncotarget, found that E6, an oncoprotein produced by the virus, interacts with several other molecules in host cells in a manner that ensures infected cells cannot die. If they are immortal and continue to multiply, cancer develops.
ÂThere is no targeted treatment now for these cancers since German virologist Harald zur Hausen, PhD, discovered in 1983 that HPV can cause cervical cancer. Recently, the numbers of HPV-linked head and neck cancers have increased in the U.S. Now we have a chance to develop and test a very specific, potentially less toxic way to stop these cancers, said the studyÂs lead author, Xuefeng Liu, MD, associate professor of pathology at Georgetown University Medical Center. Liu is director of Telomeres and Cell Immortalization for the medical centerÂs Center for Cell Reprogramming.
Liu and his team have previously found that the HPV E6 oncoprotein interferes with the well-known p53 tumor suppressor to increase telomerase activity that extends the life span of infected cells. A telomerase is a protein that allows a cell to divide indefinitely when it would have stopped after a certain number of divisions.
In this study, researchers found that E6 also interacts with myc, a protein produced by the Myc gene, which controls gene expression in all healthy cells. They concluded that telomerase activity is dependent on E6-myc proteins hooking on to each other.
This means, said Liu, that designing a small molecule that stops E6 from joining up with myc should shut down persistent activation of telomerase. A small molecule could bind to E6 in the same spot that myc would, or bind on to myc in the same spot that E6 would, thus preventing an E6-myc complex.
ÂThis small molecule would not be toxic to all normal cells or, importantly, to master stem cells, because myc would not be affected, said Liu. ÂIt could be a unique treatment, targeted specifically to HPV cancers.Â
Georgetown researchers are now working on a prototype chemical to interfere with E6/Myc binding.
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries